
PowerPool Documentation
Release 0.6.5-dev

Isaac Cook

September 17, 2015

Contents

1 Features 1

2 Indices and tables 3
2.1 Getting Setup . 3
2.2 Setting up push block notification . 4
2.3 Components . 7

i

ii

CHAPTER 1

Features

• Lightweight, asynchronous, gevent based internals.

• Built in HTTP statistics/monitoring server.

• Flexible statistics collection engine.

• Multiple coinserver (RPC server) support for redundancy. Support for coinserver prioritization.

• Redis driven share logging allows multiple servers to log shares and statistics to a central source for easy scaling
out.

• SHA256, X11, scrypt, and scrypt-n support

• Support for merge mining multiple auxilury (merge mined) blockchains

• Modular architecture makes customization simple(r)

• Support for sending statistics via statsd

Uses Redis to log shares and statistics for miners. Work generation and (bit|lite|alt)coin data structure serialization is
performed by Cryptokit and connects to bitcoind using GBT for work generation (or getauxblock for merged work).
Currently only Python 2.7 is supported.

Built to power the SimpleMulti mining pool.

1

https://github.com/simplecrypto/cryptokit
http://simplemulti.com

PowerPool Documentation, Release 0.6.5-dev

2 Chapter 1. Features

CHAPTER 2

Indices and tables

2.1 Getting Setup

PowerPool is a Python application designed to be run on Ubuntu Linux, but will likely run in just about any Linux.
If you’re brave you might be able to get it running on Window, but I wouldn’t recommend it since it’s untested and
unsupported.

2.1.1 Requirements

• Redis - For share/block logging and hashrate recording

• Coinserver - PowerPool builds mining jobs by running getblocktemplate or getauxblock on a Bitcoin
Core, or bitcoin core like node. These docs will always refer to this as a “coinserver”.

• Miner - To test out mining we recommend getting a cpuminer since it’s easy to setup

2.1.2 Installation

mkvirtualenv pp # if you've got virtualenvwrapper...
Install all of powerpools dependencies
pip install -r requirements.txt
Install powerpool
pip install -e .
Install the hashing algorithm modules
pip install vtc_scrypt # for scryptn support
pip install drk_hash # for x11 support
pip install ltc_scrypt # for scrypt support

Now copy config.yml.example to config.yml. Fill out all required fields and you should be good to go for
testing.

pp config.yml

And now your stratum server is (or should be...) running. Point a miner at it on localhost:3333 (or more
specifically, stratum+tcp://localhost:3333 and do some mining. View server health on the monitor port
at http://localhost:3855. Various events will be recorded into Redis in a format that SimpleCoin is familiar
with. See Simple Coin for a reference implementation of a frontend that is compaitble with PowerPool.

3

https://github.com/simplecrypto/simplecoin_multi

PowerPool Documentation, Release 0.6.5-dev

2.1.3 Production Use

There’s no official guide at this point, but some general recommendations for new pool ops. Realize that unfortunately
running a well optimized pool is complicated, so do your reading and don’t become a hidden cost for your miners by
being uneducated.

• Increase the number of connections on your coinserver with maxconnections configuration parameter. This
helps you get notified of new blocks more quickly, leading to lower orphan rates.

• Recompile your coinserver from source with an increased MAX_OUTBOUND_CONNECTIONS in net.cpp.
This will cause blocks that you solve to propogate to the network more rapidly.

• Increase rpcthreads configuration on coinservers. Generally you want at least few threads for the frontend
(simplecoin_multi), and a few threads for each powerpool that connects to the server. If you are running polling
instead of push block the rpcserver can become thread starved and block sumits, etc might fail.

• Setup Nagios to monitor your coinservers. This will help you know when they’re getting slow or thread starved.

• Change your stop-writes-on-bgsave-error configuration to no for Redis, in case you run out of disk
space. However you should setup a Nagios to make sure this isn’t a normal occurance.

• Run PowerPool with PYTHONOPTIMIZE=2 enviroment variable to skip all debugging computations/logging.

• Use a service like Nagios or Sensu to monitor your Stratum server ports with the check_stratum.py script
in the contrib folder. Your miners appreicate good uptime.

• Use upstart or init.d to manage starting/stopping powerpool as a service. There is an example upstart config in
the contrib folder.

• Use a firewall to block public access to your debugging port (3855 by default..), since it contains sensative
information.

• Read and understand the config.yml.example. It should be thoroughly commented and up to date, and if it’s not
open a ticket for us.

2.2 Setting up push block notification

To check for new blocks Powerpool defaults to polling each of the coinservers you configure. It just runs the rpc call
‘getblockcount’ 5x/second (configurable) to see if the block height has changed. If it has changed, it runs getblock-
template to grab the new info.

Since polling creates a 100ms delay (on average) for detecting new blocks one optimization is to configure the coin-
servers to push PowerPool a notification when they accept a new block. Since this reduces the delay to <1ms you’ll
end up with fewer orphans. The impact of the faster speed is more pronounced with currencies that have shorter block
times.

Although this is an improvement, its worth mentioning that it is pretty minor. We’re talking about shaving off ~100ms
or so, which should reduce orphan percentages by ~0.01% - 0.1%, depending on block times. Miners often connect
with far more latency than this. The biggest reason to do this is to reduce the rpc load on your coinservers if there are
multiple powerpool instances connected to them.

2.2.1 How push block works

Standard Bitcoin/Litecoin based coinservers have a built in config option to allow executing a script right after a new
block is discovered. We want to run a script that notifies our PowerPool process(es) to check for a new block.

To accomplish this PowerPool has built in support for receiving a UDP datagram on its datagram port. The basic
system flow looks like this:

4 Chapter 2. Indices and tables

PowerPool Documentation, Release 0.6.5-dev

Coinserver -> Learns of new block
Coinserver -> Executes blocknotify script (Alertblock)
Alertblock -> Parses the passed in .push file
Alertblock -> Sends a UDP datagram based on that .push file
PowerPool -> Receives UDP datagram
PowerPool -> Runs `getblocktemplate` on the Coinserver

Note: Using a pushblock script to deliver a UDP datagram to PowerPool can be accomplished in many different
ways. We’re going to walk through how we’ve set it up on our own servers, but please note if your server configura-
tion/architechture differs much from ours you may have to adapt this guide.

2.2.2 Open the datagram port

The datagram option in powerpool’s config is disabled by default because access to that port will allow users to
remotely execute any command in your powerpool instance. It must be enabled in your powerpool config for any of
this to do anything.

Warning: In production the datagram port should always be behind a firewall, as it is basically root access to
your mining server.

2.2.3 Modify the coinserver’s config

This is the part that tells the coinserver what script to run when it learns of a new block.

blocknotify=/usr/bin/alertblock /path/to/my.push

You’ll want something similar to this in each coinserver’s config. Make sure to restart it after.

2.2.4 Alertblock script

Now that the coin server is trying to run /usr/bin/alertblock, you’ll need to make that Alertblock script.

Open your text editor of choice and save this to /usr/bin/alertblock. You’ll also need to make it executable
with chmod +x /usr/bin/alertblock.

#!/bin/bash
cat $1 | xargs -P 0 -d '\n' -I ARGS bash -c 'a="ARGS"; args=($a); echo "${args[@]:2}" | nc -4u -w0 -q1 ${args[@]:0:2}'
For testing the command
#cat $1 | xargs -P 0 -td '\n' -I ARGS bash -xc 'a="ARGS"; args=($a); echo "${args[@]:2}" | nc -4u -w0 -q1 ${args[@]:0:2}'

Note: Unfortunately netcat has a non-uniform implementation across different Linux platforms. Some platforms will
require you to use “ncat” instead of “nc” in the above script.

2.2.5 Block .push script

Now your Alertblock script will be looking for a /path/to/my.push file. The data in this file is interpreted by the
alertblock script. It looks at each line and tries to send a UDP packet based on the info. The .push file might contain
something like this:

2.2. Setting up push block notification 5

PowerPool Documentation, Release 0.6.5-dev

127.0.0.1 6855 VTC getblocktemplate signal=1 __spawn=1

The 127.0.0.1 and 6855 are the address and port to send the datagram to. The remaining stuff are the contents of
the datagram. PowerPool’s datagram format is basically:

<name of component> <function to run on component> *<positional arguments for component> **<keyword arguments for components> <special flags>

The port (6855) should be the monitor port for the stratum process you want to send the notification to. The (VTC)
should match the name of the coinserver component in the powerpool instance, normally the currency code.

If you need to push to multiple monitor ports just do something like:

127.0.0.1 6855 VTC getblocktemplate signal=1 __spawn=1
127.0.0.1 6856 VTC getblocktemplate signal=1 __spawn=1

For merge mined coins you’ll want something slightly different:

127.0.0.1 6855 DOGE _check_new_jobs signal=1 _single_exec=True __spawn=1

2.2.6 Powerpool config

Now we need to update PowerPool’s config to not poll, as it is no longer needed, and makes the coinserver’s logs a lot
harder to use. All that needs to be done is set the poll key to False for each currency you have push block setup
for.

VTC:
poll: False
type: powerpool.jobmanagers.MonitorNetwork
algo: scryptn
currency: VTC
etc...

2.2.7 Confirm it is working

You’ll want to double check push block notifications are actually working as planned. The easiest way is to visit
PowerPool’s monitoring endpoint and look for the last_signal key. It should be updated each time PowerPool is
notified of a block via push block.

Warning: If the server has poll turned off and is not getting push block notifications, you will get a LOT of
orphans. In the future we would have polling automatically enable on failed push block, but right now it will just
not update more than every 15 seconds!

2.2.8 Motivations

If this whole process seems complex that’s because it is. Unfortunately it needs improvement. The reason for all this is
that we can change which powerpool servers recieve push block notifications without needing to restart any powerpool
servers or coinservers. A hardcoded implementation is simpler to setup, although more brittle, and requires service
interruptions to add/remove instances and coins, which we don’t want.

6 Chapter 2. Indices and tables

PowerPool Documentation, Release 0.6.5-dev

2.3 Components

2.3.1 Component Base

class powerpool.lib.Component
Abstract base class documenting the component architecture expectations. Each major part of powerpool inher-
its from this class.

_configure(config)
Applies defaults and checks requirements of component configuration

_incr(counter, amount=1)

_lookup(key)

defaults = {}

gl_methods = []

key = None

name

one_min_stats = []

one_sec_stats = []

start()
Called when the application is starting.

status
Should return a json convertable data structure to be shown in the web interface.

stop()
Called when the application is trying to exit. Should not block.

update_config(updated_config)
A call performed when the configuration file gets reloaded at runtime. self.raw_config will have bee pre-
populated by the manager before call is made.

Since configuration values of certain components can’t be reloaded at runtime it’s good practice to log a
warning when a change is detected but can’t be implemented. Not currently used, but set aside for sunnier
days.

2.3.2 PowerPool (manager)

class powerpool.main.PowerPool(config)
This is a singelton class that manages starting/stopping of the server, along with all statistical counters rotation
schedules. It takes the raw config and distributes it to each module, as well as loading dynamic modules.

It also handles logging facilities by being the central logging registry. Each module can “register” a logger with
the main object, which attaches it to configured handlers.

_tick_stats()
A greenlet that handles rotation of statistics

defaults = {‘loggers’: [{‘type’: ‘StreamHandler’, ‘level’: ‘NOTSET’}], ‘server_number’: 0, ‘datagram’: {‘host’: ‘127.0.0.1’, ‘enabled’: False, ‘port’: 6855}, ‘default_component_log_level’: ‘INFO’, ‘term_timeout’: 10, ‘procname’: ‘powerpool’, ‘algorithms’: {‘scrypt’: {‘hashes_per_share’: 65536, ‘module’: ‘ltc_scrypt.getPoWHash’}, ‘x11’: {‘hashes_per_share’: 4294967296, ‘module’: ‘drk_hash.getPoWHash’}, ‘scryptn’: {‘hashes_per_share’: 65536, ‘module’: ‘vtc_scrypt.getPoWHash’}, ‘sha256’: {‘hashes_per_share’: 4294967296, ‘module’: ‘cryptokit.sha256d’}, ‘lyra2re’: {‘hashes_per_share’: 33554432, ‘module’: ‘lyra2re_hash.getPoWHash’}, ‘blake256’: {‘hashes_per_share’: 65536, ‘module’: ‘blake_hash.getPoWHash’}}, ‘extranonce_size’: 4, ‘events’: {‘host’: ‘127.0.0.1’, ‘enabled’: False, ‘port’: 8125}, ‘extranonce_serv_size’: 4}

dump_objgraph()
Dump garbage collection information on SIGUSR1 to aid debugging memory leaks

2.3. Components 7

PowerPool Documentation, Release 0.6.5-dev

exit(signal=None)
Handle an exit request

classmethod from_raw_config(raw_config, args)

gl_methods = [’_tick_stats’]

handle(data, address)

log_event(event)
Sends an event to statsd

manager = None

register_logger(name)

register_stat_counters(comp, min_counters, sec_counters=None)
Creates and adds the stat counters to internal tracking dictionaries. These dictionaries are iterated to
perform stat rotation, as well as accessed to perform stat logging

start()

status
For display in the http monitor

2.3.3 Stratum Server

Handles spawning one or many stratum servers (which bind to a single port each), as well as spawning corresponding
agent servers as well. It holds data structures that allow lookup of all StratumClient objects.

class powerpool.stratum_server.StratumServer(config)
A single port binding of our stratum server.

_spawn = None

add_client(client)

defaults = {‘minimum_manual_diff’: 64, ‘reporter’: None, ‘server_seed’: 0, ‘vardiff’: {‘spm_target’: 20, ‘tiers’: [8, 16, 32, 64, 96, 128, 192, 256, 512], ‘interval’: 30, ‘enabled’: False}, ‘agent’: {‘port_diff’: 1111, ‘enabled’: False, ‘timeout’: 120, ‘accepted_types’: [’temp’, ‘status’, ‘hashrate’, ‘thresholds’]}, ‘address’: ‘0.0.0.0’, ‘start_difficulty’: 128, ‘port’: 3333, ‘aliases’: {}, ‘idle_worker_disconnect_threshold’: 3600, ‘donate_key’: ‘donate’, ‘valid_address_versions’: [], ‘jobmanager’: None, ‘algo’: 2345987234589723495872345L, ‘idle_worker_threshold’: 300, ‘push_job_interval’: 30}

handle(sock, address)
A new connection appears on the server, so setup a new StratumClient object to manage it.

new_job(event)
Gets called whenever there’s a new job generated by our jobmanager.

one_min_stats = [’stratum_connects’, ‘stratum_disconnects’, ‘agent_connects’, ‘agent_disconnects’, ‘reject_low_share_n1’, ‘reject_dup_share_n1’, ‘reject_stale_share_n1’, ‘acc_share_n1’, ‘reject_low_share_count’, ‘reject_dup_share_count’, ‘reject_stale_share_count’, ‘acc_share_count’, ‘unk_err’, ‘not_authed_err’, ‘not_subbed_err’]

remove_client(client)
Manages removing the StratumClient from the luts

set_user(client)
Add the client (or create) appropriate worker and address trackers

start(*args, **kwargs)

status
For display in the http monitor

stop(*args, **kwargs)

class powerpool.stratum_server.StratumClient(sock, address, logger, manager, server, re-
porter, algo, config)

Object representation of a single stratum connection to the server.

DUP_SHARE = 1

8 Chapter 2. Indices and tables

PowerPool Documentation, Release 0.6.5-dev

DUP_SHARE_ERR = 22

LOW_DIFF_ERR = 23

LOW_DIFF_SHARE = 2

STALE_SHARE = 3

STALE_SHARE_ERR = 21

VALID_SHARE = 0

_incr(*args)

_push(job, flush=False, block=True)
Abbreviated push update that will occur when pushing new block notifications. Mico-optimized to try and
cut stale share rates as much as possible.

details
Displayed on the single client view in the http status monitor

error_counter = {24: ‘not_authed_err’, 25: ‘not_subbed_err’, 20: ‘unk_err’}

errors = {20: ‘Other/Unknown’, 21: ‘Job not found (=stale)’, 22: ‘Duplicate share’, 23: ‘Low difficulty share’, 24: ‘Unauthorized worker’, 25: ‘Not subscribed’}

last_share_submit_delta

push_difficulty()
Pushes the current difficulty to the client. Currently this only happens uppon initial connect, but would be
used for vardiff

push_job(flush=False, timeout=False)
Pushes the latest job down to the client. Flush is whether or not he should dump his previous jobs or not.
Dump will occur when a new block is found since work on the old block is invalid.

read(*args, **kwargs)

recalc_vardiff()

send_error(num=20, id_val=1)
Utility for transmitting an error to the client

send_success(id_val=1)
Utility for transmitting success to the client

share_type_strings = {0: ‘acc’, 1: ‘dup’, 2: ‘low’, 3: ‘stale’}

submit_job(data, t)
Handles recieving work submission and checking that it is valid , if it meets network diff, etc. Sends reply
to stratum client.

summary
Displayed on the all client view in the http status monitor

2.3.4 Jobmanager

This module generates mining jobs and sends them to workers. It must provide current jobs for the stratum server to
be able to push. The reference implementation monitors an RPC daemon server.

class powerpool.jobmanagers.monitor_aux_network.MonitorAuxNetwork(config)

_check_new_jobs(*args, **kwargs)

defaults = {‘signal’: None, ‘enabled’: False, ‘send’: True, ‘currency’: 2345987234589723495872345L, ‘rpc_ping_int’: 2, ‘algo’: 2345987234589723495872345L, ‘flush’: False, ‘coinservs’: 2345987234589723495872345L, ‘work_interval’: 1}

2.3. Components 9

PowerPool Documentation, Release 0.6.5-dev

found_block(address, worker, header, coinbase_raw, job, start)

gl_methods = [’_monitor_nodes’, ‘_check_new_jobs’]

one_min_stats = [’work_restarts’, ‘new_jobs’]

start()

status

class powerpool.jobmanagers.monitor_network.MonitorNetwork(config)

_check_new_jobs(*args, **kwargs)

_poll_height(*args, **kwargs)

config = {‘diff1’: 1766820104831717178943502833727831496196810259731196417549125097682370560L, ‘pool_address’: ‘’, ‘pow_block_hash’: False, ‘max_blockheight’: None, ‘block_poll’: 0.2, ‘hashes_per_share’: 65535, ‘currency’: 2345987234589723495872345L, ‘rpc_ping_int’: 2, ‘algo’: 2345987234589723495872345L, ‘poll’: None, ‘payout_drk_mn’: True, ‘coinservs’: 2345987234589723495872345L, ‘signal’: None, ‘merged’: (), ‘job_refresh’: 15}

defaults = {‘diff1’: 1766820104831717178943502833727831496196810259731196417549125097682370560L, ‘pool_address’: ‘’, ‘pow_block_hash’: False, ‘max_blockheight’: None, ‘block_poll’: 0.2, ‘hashes_per_share’: 65535, ‘currency’: 2345987234589723495872345L, ‘rpc_ping_int’: 2, ‘algo’: 2345987234589723495872345L, ‘poll’: None, ‘payout_drk_mn’: True, ‘coinservs’: 2345987234589723495872345L, ‘signal’: None, ‘merged’: (), ‘job_refresh’: 15}

found_block(raw_coinbase, address, worker, hash_hex, header, job, start)
Submit a valid block (hopefully!) to the RPC servers

generate_job(push=False, flush=False, new_block=False, network=’main’)
Creates a new job for miners to work on. Push will trigger an event that sends new work but doesn’t force
a restart. If flush is true a job restart will be triggered.

getblocktemplate(new_block=False, signal=False)

new_merged_work(event)

one_min_stats = [’work_restarts’, ‘new_jobs’, ‘work_pushes’]

start()

status
For display in the http monitor

2.3.5 Reporters

The reporter is responsible for transmitting shares, mining statistics, and new blocks to some external storage. The
reference implementation is the CeleryReporter which aggregates shares into batches and logs them in a way designed
to interface with SimpleCoin. The reporter is also responsible for tracking share rates for vardiff. This makes sense if
you want vardiff to be based off the shares per second of an entire address, instead of a single connection.

class powerpool.reporters.base.Reporter
An abstract base class to document the Reporter interface.

add_block(address, height, total_subsidy, fees, hex_bits, hash, merged, worker, algo)
Called when a share is submitted with a hash that is valid for the network.

agent_send(address, worker, typ, data, time)
Called when valid data is recieved from a PPAgent connection.

log_share(client, diff, typ, params, job=None, header_hash=None, header=None, start=None,
**kwargs)

Logs a share to external sources for payout calculation and statistics

class powerpool.reporters.redis_reporter.RedisReporter(config)

_queue_add_block(address, height, total_subsidy, fees, hex_bits, hex_hash, currency, algo,
merged=False, worker=None, **kwargs)

10 Chapter 2. Indices and tables

PowerPool Documentation, Release 0.6.5-dev

_queue_agent_send(address, worker, typ, data, stamp)

_queue_log_one_minute(address, worker, algo, stamp, typ, amount)

_queue_log_share(address, shares, algo, currency, merged=False)

agent_send(*args, **kwargs)

defaults = {‘pool_report_configs’: {}, ‘redis’: {}, ‘attrs’: {}, ‘chain’: 1}

gl_methods = [’_queue_proc’, ‘_report_one_min’]

log_share(client, diff, typ, params, job=None, header_hash=None, header=None, **kwargs)

one_sec_stats = [’queued’]

status

2.3.6 Monitor

class powerpool.monitor.ServerMonitor(config)
Provides a few useful json endpoints for viewing server health and performance.

client(comp_key, username)

clients_0_5()
Legacy client view emulating version 0.5 support

clients_comp(comp_key)

comp(comp_key)

comp_config(comp_key)

counters()

debug()

defaults = {‘DEBUG’: False, ‘JSONIFY_PRETTYPRINT_REGULAR’: False, ‘port’: 3855, ‘JSON_SORT_KEYS’: False, ‘address’: ‘127.0.0.1’}

general()

general_0_5()
Legacy 0.5 emulating view

handler_class
alias of CustomWSGIHandler

start(*args, **kwargs)

stop(*args, **kwargs)

2.3. Components 11

PowerPool Documentation, Release 0.6.5-dev

12 Chapter 2. Indices and tables

Index

Symbols
_check_new_jobs() (power-

pool.jobmanagers.monitor_aux_network.MonitorAuxNetwork
method), 9

_check_new_jobs() (power-
pool.jobmanagers.monitor_network.MonitorNetwork
method), 10

_configure() (powerpool.lib.Component method), 7
_incr() (powerpool.lib.Component method), 7
_incr() (powerpool.stratum_server.StratumClient

method), 9
_lookup() (powerpool.lib.Component method), 7
_poll_height() (powerpool.jobmanagers.monitor_network.MonitorNetwork

method), 10
_push() (powerpool.stratum_server.StratumClient

method), 9
_queue_add_block() (power-

pool.reporters.redis_reporter.RedisReporter
method), 10

_queue_agent_send() (power-
pool.reporters.redis_reporter.RedisReporter
method), 10

_queue_log_one_minute() (power-
pool.reporters.redis_reporter.RedisReporter
method), 11

_queue_log_share() (power-
pool.reporters.redis_reporter.RedisReporter
method), 11

_spawn (powerpool.stratum_server.StratumServer at-
tribute), 8

_tick_stats() (powerpool.main.PowerPool method), 7

A
add_block() (powerpool.reporters.base.Reporter method),

10
add_client() (powerpool.stratum_server.StratumServer

method), 8
agent_send() (powerpool.reporters.base.Reporter

method), 10

agent_send() (powerpool.reporters.redis_reporter.RedisReporter
method), 11

C
client() (powerpool.monitor.ServerMonitor method), 11
clients_0_5() (powerpool.monitor.ServerMonitor

method), 11
clients_comp() (powerpool.monitor.ServerMonitor

method), 11
comp() (powerpool.monitor.ServerMonitor method), 11
comp_config() (powerpool.monitor.ServerMonitor

method), 11
Component (class in powerpool.lib), 7
config (powerpool.jobmanagers.monitor_network.MonitorNetwork

attribute), 10
counters() (powerpool.monitor.ServerMonitor method),

11

D
debug() (powerpool.monitor.ServerMonitor method), 11
defaults (powerpool.jobmanagers.monitor_aux_network.MonitorAuxNetwork

attribute), 9
defaults (powerpool.jobmanagers.monitor_network.MonitorNetwork

attribute), 10
defaults (powerpool.lib.Component attribute), 7
defaults (powerpool.main.PowerPool attribute), 7
defaults (powerpool.monitor.ServerMonitor attribute), 11
defaults (powerpool.reporters.redis_reporter.RedisReporter

attribute), 11
defaults (powerpool.stratum_server.StratumServer

attribute), 8
details (powerpool.stratum_server.StratumClient at-

tribute), 9
dump_objgraph() (powerpool.main.PowerPool method),

7
DUP_SHARE (powerpool.stratum_server.StratumClient

attribute), 8
DUP_SHARE_ERR (power-

pool.stratum_server.StratumClient attribute),
8

13

PowerPool Documentation, Release 0.6.5-dev

E
error_counter (powerpool.stratum_server.StratumClient

attribute), 9
errors (powerpool.stratum_server.StratumClient at-

tribute), 9
exit() (powerpool.main.PowerPool method), 7

F
found_block() (powerpool.jobmanagers.monitor_aux_network.MonitorAuxNetwork

method), 10
found_block() (powerpool.jobmanagers.monitor_network.MonitorNetwork

method), 10
from_raw_config() (powerpool.main.PowerPool class

method), 8

G
general() (powerpool.monitor.ServerMonitor method), 11
general_0_5() (powerpool.monitor.ServerMonitor

method), 11
generate_job() (powerpool.jobmanagers.monitor_network.MonitorNetwork

method), 10
getblocktemplate() (power-

pool.jobmanagers.monitor_network.MonitorNetwork
method), 10

gl_methods (powerpool.jobmanagers.monitor_aux_network.MonitorAuxNetwork
attribute), 10

gl_methods (powerpool.lib.Component attribute), 7
gl_methods (powerpool.main.PowerPool attribute), 8
gl_methods (powerpool.reporters.redis_reporter.RedisReporter

attribute), 11

H
handle() (powerpool.main.PowerPool method), 8
handle() (powerpool.stratum_server.StratumServer

method), 8
handler_class (powerpool.monitor.ServerMonitor at-

tribute), 11

K
key (powerpool.lib.Component attribute), 7

L
last_share_submit_delta (power-

pool.stratum_server.StratumClient attribute),
9

log_event() (powerpool.main.PowerPool method), 8
log_share() (powerpool.reporters.base.Reporter method),

10
log_share() (powerpool.reporters.redis_reporter.RedisReporter

method), 11
LOW_DIFF_ERR (power-

pool.stratum_server.StratumClient attribute),
9

LOW_DIFF_SHARE (power-
pool.stratum_server.StratumClient attribute),
9

M
manager (powerpool.main.PowerPool attribute), 8
MonitorAuxNetwork (class in power-

pool.jobmanagers.monitor_aux_network),
9

MonitorNetwork (class in power-
pool.jobmanagers.monitor_network), 10

N
name (powerpool.lib.Component attribute), 7
new_job() (powerpool.stratum_server.StratumServer

method), 8
new_merged_work() (power-

pool.jobmanagers.monitor_network.MonitorNetwork
method), 10

O
one_min_stats (powerpool.jobmanagers.monitor_aux_network.MonitorAuxNetwork

attribute), 10
one_min_stats (powerpool.jobmanagers.monitor_network.MonitorNetwork

attribute), 10
one_min_stats (powerpool.lib.Component attribute), 7
one_min_stats (powerpool.stratum_server.StratumServer

attribute), 8
one_sec_stats (powerpool.lib.Component attribute), 7
one_sec_stats (powerpool.reporters.redis_reporter.RedisReporter

attribute), 11

P
PowerPool (class in powerpool.main), 7
push_difficulty() (power-

pool.stratum_server.StratumClient method),
9

push_job() (powerpool.stratum_server.StratumClient
method), 9

R
read() (powerpool.stratum_server.StratumClient method),

9
recalc_vardiff() (powerpool.stratum_server.StratumClient

method), 9
RedisReporter (class in power-

pool.reporters.redis_reporter), 10
register_logger() (powerpool.main.PowerPool method), 8
register_stat_counters() (powerpool.main.PowerPool

method), 8
remove_client() (power-

pool.stratum_server.StratumServer method),
8

14 Index

PowerPool Documentation, Release 0.6.5-dev

Reporter (class in powerpool.reporters.base), 10

S
send_error() (powerpool.stratum_server.StratumClient

method), 9
send_success() (powerpool.stratum_server.StratumClient

method), 9
ServerMonitor (class in powerpool.monitor), 11
set_user() (powerpool.stratum_server.StratumServer

method), 8
share_type_strings (power-

pool.stratum_server.StratumClient attribute),
9

STALE_SHARE (power-
pool.stratum_server.StratumClient attribute),
9

STALE_SHARE_ERR (power-
pool.stratum_server.StratumClient attribute),
9

start() (powerpool.jobmanagers.monitor_aux_network.MonitorAuxNetwork
method), 10

start() (powerpool.jobmanagers.monitor_network.MonitorNetwork
method), 10

start() (powerpool.lib.Component method), 7
start() (powerpool.main.PowerPool method), 8
start() (powerpool.monitor.ServerMonitor method), 11
start() (powerpool.stratum_server.StratumServer

method), 8
status (powerpool.jobmanagers.monitor_aux_network.MonitorAuxNetwork

attribute), 10
status (powerpool.jobmanagers.monitor_network.MonitorNetwork

attribute), 10
status (powerpool.lib.Component attribute), 7
status (powerpool.main.PowerPool attribute), 8
status (powerpool.reporters.redis_reporter.RedisReporter

attribute), 11
status (powerpool.stratum_server.StratumServer at-

tribute), 8
stop() (powerpool.lib.Component method), 7
stop() (powerpool.monitor.ServerMonitor method), 11
stop() (powerpool.stratum_server.StratumServer

method), 8
StratumClient (class in powerpool.stratum_server), 8
StratumServer (class in powerpool.stratum_server), 8
submit_job() (powerpool.stratum_server.StratumClient

method), 9
summary (powerpool.stratum_server.StratumClient at-

tribute), 9

U
update_config() (powerpool.lib.Component method), 7

V
VALID_SHARE (power-

pool.stratum_server.StratumClient attribute),
9

Index 15

	Features
	Indices and tables
	Getting Setup
	Setting up push block notification
	Components

